Archiwum kategorii: Mechanika

Macierz rotacji

Macierz rotacji opisuje transformację pomiędzy dwoma układami współrzędnych. W przedstawionym przykładzie są dwa układy kartezjańskie {A} i {B}. Wyznaczona zostanie macierz rotacji opisują transformację z układu {B} do układu {A}. Znajomość takiej macierzy pozwala na przetransformowanie współrzędnych dowolnego wektora z układu {B} do układu {A}.

_{B}^{A}\bm{R}\left[ \begin{array}{ccc} \hat X_{B} \cdot \hat X_{A} & \hat X_{B} \cdot \hat Y_{A} & \hat X_{B} \cdot \hat Z_{A}\\ \hat Y_{B} \cdot \hat X_{A} & \hat Y_{B} \cdot \hat Y_{A} & \hat Y_{B} \cdot \hat Y_{A}\\ \hat Z_{B} \cdot \hat X_{A} & \hat Z_{B} \cdot \hat Y_{A} & \hat Z_{B} \cdot \hat Z_{A} \end{array} \right]

Wyrazy \hat X_{B}, \hat X_{A}, \hat Y_{B}, \hat Y_{A} , \hat Z_{B}, \hat Z_{A} są wersorami tj. wektorami jednostkowymi.

Kolejne wyrazy macierzy _{B}^{A}\bm{R} wyznaczane są w następujący sposób:

\hat X_{B} \cdot \hat X_{A} = |\hat X_{B}| \cdot |\hat X_{A}| \cos{\sphericalangle{(\hat X_{B},\hat X_{A})}}

Wyznaczanie momentu gnącego i siły tnącej w belce

Belka podparta na dwóch podporach poddana jest obciążeniom statycznym. Na początku, w punkcie A, belka podparta jest na podporze nieruchomej. Na końcu, w punkcie B, belka podparta jest na podporze ruchomej. W przykładzie do belki zostaje przypisany dwuwymiarowy układ współrzędnych.

Belka poddana obciążeniom statycznym

Równania równowagi statycznej dla rozpatrywanego przypadku obciążonej belki.

\sum{F_{ix}} = 0 \rightarrow R_{AX} = 0 \sum{F_{iy}} = 0 \rightarrow R_{AY} - P - 2 \cdot P + R_{BY} = 0 \sum{M_{iA}} = 0 \rightarrow l \cdot P + 2 \cdot l \cdot 2 \cdot P - 3\cdot l \cdot R_{BY} = 0

Dodatkowe obliczenia wyznaczające wartości sił -> belka zdanie 1

Równania Lagrange’a dla układu mechanicznego

Dynamika trójmasowego układu mechanicznego w ruchu obrotowym. W rozważanym przykładzie zastosowane zostanie zapis energii w formie wariacyjnej tj. innymi słowy w postaci równań Eulera-Lagrange’a pierwszego rodzaju.

Trójmasowy układ mechaniczny

Ogólna postać równań Lagrange’a
L = E_k - V

Równania Lagrange’a pierwszego rodzaju:

\frac{d}{dt}\frac{\partial{L}}{\partial{{\dot{q_i}}}} - \frac{\partial{L}}{\partial{q_i}} + \frac{\partial{D}}{\partial{{\dot{q_i}}}} = \sum_{k}{Q_{k}}

Znaczenie symboli:

L \rightarrow Lagrangian E_k \rightarrow energia \,kinetyczna V \rightarrow energia \,potencjalna D \rightarrow \,dyssypacja \,energii q_i \rightarrow zmienna \,o \,indeksie \,i \dot{ q_i} \rightarrow pierwsza \,pochodna \,po \,czasie

Zmienne w rozważanym układzie mechanicznym:

q_1 = \varphi_1, \dot q_1 =\dot \varphi_1 q_2 = \varphi_2, \dot q_2 =\dot \varphi_2 q_3 = \varphi_3, \dot q_3 =\dot \varphi_3

Energia kinetyczna:

E_k = \frac{1}{2}\cdot J_1 \cdot \dot{\varphi_1}^2 + \frac{1}{2}\cdot J_2 \cdot \dot{\varphi_2}^2 + \frac{1}{2}\cdot J_3 \cdot \dot{\varphi_3}^2

Energia potencjalna:

V = \frac{1}{2}\cdot c_1 \cdot \varphi_{1}^2 + \frac{1}{2}\cdot c_{12} \cdot (\varphi_{2} - \varphi_{1})^2 + \frac{1}{2}\cdot c_{23} \cdot (\varphi_{2} - \varphi_{3})^2 + \frac{1}{2}\cdot c_3 \cdot \varphi_{3}^2

Dyssypacja energii:

D = \frac{1}{2}\cdot h_{12} \cdot (\dot\varphi_{2} - \dot\varphi_{1})^2 + \frac{1}{2}\cdot h_{23} \cdot (\dot\varphi_{2} - \dot\varphi_{3})^2 + \frac{1}{2}\cdot h_3 \cdot \dot\varphi_{3}^2

Równania dla zmiennej q1:

J_1 \cdot \ddot \varphi_1 - (-c_1 \cdot \varphi_1 - c_{12} \cdot (\varphi_2 - \varphi_1) \cdot (-1)) + (h_{12}\cdot (\dot \varphi_2 - \dot \varphi_1)\cdot (-1)) = 0
J_1 \cdot \ddot \varphi_1 + c_1 \cdot \varphi_1 - c_{12} \cdot (\varphi_2 - \varphi_1) - h_{12}\cdot (\dot \varphi_2 - \dot \varphi_1) = 0
J_1 \cdot \ddot \varphi_1 = - c_1 \cdot \varphi_1 + c_{12} \cdot (\varphi_2 - \varphi_1) + h_{12}\cdot (\dot \varphi_2 - \dot \varphi_1)

Równania dla zmiennej q2:

J_2 \cdot \ddot \varphi_2 - (-c_{12}\cdot (\varphi_2 - \varphi_1) -c_{23}\cdot (\varphi_2 - \varphi_3)) + (h_{12}\cdot (\dot\varphi_2 - \dot\varphi_1) + h_{23}\cdot (\dot\varphi_2 - \dot\varphi_3)) = T
J_2 \cdot \ddot \varphi_2 + c_{12}\cdot (\varphi_2 - \varphi_1) + c_{23}\cdot (\varphi_2 - \varphi_3) + h_{12}\cdot (\dot\varphi_2 - \dot\varphi_1) + h_{23}\cdot (\dot\varphi_2 - \dot\varphi_3) = T
J_2 \cdot \ddot \varphi_2 = - c_{12}\cdot (\varphi_2 - \varphi_1) - c_{23}\cdot (\varphi_2 - \varphi_3) - h_{12}\cdot (\dot\varphi_2 - \dot\varphi_1) - h_{23}\cdot (\dot\varphi_2 - \dot\varphi_3) + T

Równania dla zmiennej q3:

J_3 \cdot \ddot \varphi_3 - (-c_{23}\cdot (\varphi_2 - \varphi_3)\cdot(-1) -c_{3}\cdot \varphi_3) + (h_{23}\cdot (\dot\varphi_2 - \dot\varphi_3)\cdot(-1) + h_{3}\cdot \dot\varphi_3) = 0
J_3 \cdot \ddot \varphi_3 - c_{23}\cdot (\varphi_2 - \varphi_3) + c_{3}\cdot \varphi_3 - h_{23}\cdot (\dot\varphi_2 - \dot\varphi_3) + h_{3}\cdot \dot\varphi_3 = 0
J_3 \cdot \ddot \varphi_3 = c_{23}\cdot (\varphi_2 - \varphi_3) - c_{3}\cdot \varphi_3 + h_{23}\cdot (\dot\varphi_2 - \dot\varphi_3) - h_{3}\cdot \dot\varphi_3


Dynamika w ruchu obrotowym

W przykładzie rozpatrzony zostanie układ mechaniczny o trzech stopniach swobody. W jednym miejscu układu przyłożony jest zewnętrzny moment T. Rozpatrywany układ posiada w swojej strukturze elementy sprężyste i tłumiące.

Układ mechaniczny o trzech stopniach swobody

Równanie dla pierwszego stopnia swobody:

J_{1}\cdot \ddot{\varphi_1} = -c_1\cdot\varphi_1 + c_{12}\cdot(\varphi_2 - \varphi_1) + h_{12}\cdot(\dot{\varphi_2} - \dot{\varphi_1})

Równanie dla drugiego stopnia swobody

J_{2}\cdot \ddot{\varphi_2} = -c_{12}\cdot(\varphi_2 - \varphi_1) - h_{12}\cdot(\dot{\varphi_2} - \dot{\varphi_1}) - c_{23}\cdot(\varphi_2 - \varphi_3) - h_{23}\cdot(\dot{\varphi_2} - \dot{\varphi_3}) + T

Równanie dla trzeciegostopnia swobody

J_{3}\cdot \ddot{\varphi_3} = -c_3\cdot\varphi_3 - h_3\cdot\dot\varphi_3+ c_{23}\cdot(\varphi_2 - \varphi_3) + h_{23}\cdot(\dot{\varphi_2} - \dot{\varphi_3})

Moment bezwładności

Moment bezwładności jest odpowiednikiem masy w ruchu obrotowym.

W ogólności moment bezwładności dany jest wzorem:

I = \int_m r^2 \cdot dm

Moment bezwładności bryły sztywnej jest więc sumą iloczynów elementarnych mas dm i kwadratu ich odległości od osi obrotu.

Bardzo często przy obliczaniu momentów bezwładności wykorzystywane jest twierdzenie o osiach równoległych, znane również jako Twierdzenie Steinera.


I = I_0 + m \cdot d^2

Rozwiązane zadania i przykłady:

Moment bezwładności

Tarcie toczne

Tarcie toczne

Wałek o masie m posiada możliwość toczenia się z równi pochyłej. Promień przekroju poprzecznego wałka wynosi r. Celem zadania jest wyznaczenie siły F, którą należy przyłożyć w środku masy wałka tak aby pozostał on w równowadze. Pomiędzy wałkiem a równią występuje tarcie toczne o współczynniku f.

\Sigma F_{ix} = 0 -F + G\cdot sin{\alpha} + T= 0 \Sigma F_{iy} = 0 N - G\cdot cos{\alpha}= 0 \Sigma M_{ia} = 0 -f\cdot N+ r\cdot T= 0

Pełne rozwiązanie przykładu przedstawionego powyżej – tarcie toczne zadanie.

Drgania masy na sprężynie

Wyznaczanie równania ruchu dla masy drgającej na sprężynie. W rozważanym układzie kula o masie m [kg] jest przytwierdzona do sufitu za pomocą sprężyny o sztywności k [\frac{N}{m}].

Masa drgająca

Równanie ruchu dla rozważanego układu jest postaci:

m \cdot \vec{a} = -k\cdot \vec{x}

Rozważane równanie ruchu jest równaniem różniczkowym pierwszego rzędu o zmiennych rozdzielonych.

m \cdot \frac{d^2x}{dt^2} = -k\cdot x

Stosując zapis Newton-a tj. oznaczając kolejne pochodne względem czasu poprzez kropki nad różniczkowaną zmienną, równanie ruchu ma postać:

m \cdot \ddot x = -k\cdot x

Oscylator harmoniczny prosty

Drgania harmoniczne układów mechanicznych

Oscylator harmoniczny prosty - równanie ruchu i okres drgań harmonicznych.

Drgania harmoniczne są jednym z podstawowych zjawisk z jakimi mamy do czynienie w przyrodzie. W bardzo dużym skrócie można powiedzieć, ze wszystko drga. Każde ciało stałe wykonuje drgania, których częstotliwość nazywa się częstotliwością drgań własnych. Gdyby zacząć działać na ciało siłą wymuszającą o częstotliwości równej częstotliwości drgań własnych ciała to doprowadzi się je do zjawiska rezonansu mechanicznego.

Drgania harmoniczne