Archiwa tagu: prawa Kirchhoffa

Prawa Kirchhoffa w obwodach elektrycznych

Obwód elektryczny prądu stałego

Wyznaczanie równań Kirchhoffa dla obwodu elektrycznego. Obwód elektryczny zbudowany jest ze źródeł napięcia, źródeł prądu oraz rezystorów. Liczba równań Kirchhoffa niezbędna do rozwiązania obwodu elektrycznego jest następująca:
Liczbę węzłów oznaczamy jako n , stosując równania Kirchhoffa do rozwiązania obwodu elektrycznego liczba równań dla pierwszego prawa Kirchhoffa jest równa (n – 1):

I. K \rightarrow (n - 1)

Liczba równań napięciowych Kirchhoffa jest zależna od liczby gałęzi i węzłów w obwodzie. Wzór ogólny dla liczby równań napięciowych jest postaci:

II. K \rightarrow m - (n - 1)

gdzie:
m – liczba gałęzi
n – liczba węzłów

Równanie prądowe Kirchhoffa dla węzła „1” i „2”:

I_1 - I_2 - I_3 + I_{z1} = 0

Równanie prądowe Kirchhoffa dla węzła „3” i „4”:

I_2 + I_3 - I_{z1} - I_5 - I_4 - I_{z2} = 0

Równanie napięciowe Kirchhoffa dla oczka nr 1:

V_{z1} - R_1 \cdot I_1 - R_2 \cdot I_2 + V_{z3} + V_{z2} = 0 = 0

Równanie napięciowe Kirchhoffa dla oczka nr 2:

-V_{z2} - R_4 \cdot I_4 = 0 = 0

Równanie napięciowe Kirchhoffa dla oczka nr 3:

-V_{z3} + R_2 \cdot I_2 - R_3 \cdot I_3= 0 = 0

Pełne rozwiązanie rozpatrywanego przykładu:

Obwód elektryczny prądu stałego – prawa Kirchhoffa

Metoda superpozycji

Obwody elektryczne - wyznaczanie prądów i napięć w obwodzie prądu stałego z zastosowaniem metody superpozycji - zadanie 2.

Zastosowanie metody superpozycji i praw Kirchhoffa do rozwiązania obwodu elektrycznego prądu stałego. Obwód elektryczny rozwiązany w przykładzie posiada trzy wymuszenia w postaci źródeł napięcia. Poprzez zastosowanie metody superpozycji obwód elektryczny zostanie „rozbity” na trzy obwody uproszczone. Wynik końcowy będzie sumą rezultatów otrzymanych dla każdego z uproszczonych obwodów.

Metoda superpozycji – zadanie