Ładowanie kondensatora C

Stan nieustalony podczas ładowania kondensatora - obwód elektryczny

Obwód elektryczny zbudowany jest z kondensatora C, rezystora R i źródła napięcia stałego E. Kondensator przed podłączeniem go do źródła napięcia jest rozładowany. W przykładzie tym wyprowadzone zostaną wzory na prąd i napięcie kondensatora podczas jego ładowania oraz rozładowywania.

Ładowanie kondensatora – stan nieustalony

Składowe impedancji Z

Obwody elektryczne - wyprowadzenie wzorów na składowe impedancji.

Impedancja posiada trzy składowe: rezystancję R, reaktancję indukcyjną XL oraz reaktancję pojemnościową XC. Impedancja jest wektorem, którego postać matematyczna jest następująca:
Z=R+j·XL-j·XC, gdzie
– R=ρ·l/S
– XL=ω·L
– XC=1/(ω·C)
Zamieszczone poniżej został przykład w którym wyprowadzone są wzory na wspomniane powyżej reaktancje indukcyjną XL i pojemnościową XC.

Składowe impedancji wyprowadzenie wzorów

Drgania harmoniczne układów mechanicznych

Oscylator harmoniczny prosty - równanie ruchu i okres drgań harmonicznych.

Drgania harmoniczne są jednym z podstawowych zjawisk z jakimi mamy do czynienie w przyrodzie. W bardzo dużym skrócie można powiedzieć, ze wszystko drga. Każde ciało stałe wykonuje drgania, których częstotliwość nazywa się częstotliwością drgań własnych. Gdyby zacząć działać na ciało siłą wymuszającą o częstotliwości równej częstotliwości drgań własnych ciała to doprowadzi się je do zjawiska rezonansu mechanicznego.

Drgania harmoniczne

Twierdzenie Nortona – zadania

Obwody elektryczne - twierdzenie Nortona zadanie 1

Transformacja obwodów elektrycznych do prostszej postaci poprzez zastosowanie twierdzenia Nortona. W wyniku aplikacji twierdzenia Nortona wybrana część obwodu elektrycznego będzie mogła zostać przestawiona poprzez równoważne źródło prądu Nortona Inort oraz rezystancją Nortona Rnort. Twierdzenie Nortona znajduje zastosowanie tylko i wyłącznie do liniowych obwodów elektrycznych.

Twierdzenie Nortona

Twierdzenie Thevenia – zadania

Obwody elektryczne - twierdzenie Thevenia

Przekształcenia obwodów elektrycznych do prostszej postaci z wykorzystaniem twierdzenia Thevenina. W wyniku aplikacji twierdzenia Thevenina wybrana część obwodu elektrycznego będzie mogła zostać przestawiona poprzez równoważne źródło napięcia Thevenina Vth oraz rezystancją Thevenina Rth. Twierdzenie Thevenina znajduje zastosowanie tylko i wyłącznie do liniowych obwodów elektrycznych.

Twierdzenie Thevenia – zadania

Filtry pasywne – podstawy

Filtr pasywny środkowozaporowy z mostkiem podwójne T.

Podstawowe informacje dotyczące filtrów pasywnych stosowanych w obwodach elektrycznych. Notatki zawierają informacje opisujące podstawowe parametry filtrów:
• dolnoprzepustowego
• górnoprzepustowego
• środkowoprzepustowego
• środkowozaporowego
W materiałach zawarte są równania transmitancji filtrów oraz ich amplitudowe oraz fazowe charakterystyki przenoszenia.

Filtry pasywne – podstawy

Opór ruchu – tarcie

Tarcie toczne - zadanie 2.

Zjawisko tarcia jest jednym z podstawowych oporów ruchu z jakim spotykamy się w mechanice. Tarcie jest oporem materii, która przeciwdziała ruchowi ciała umieszczonego w niej. Opór powietrza jest przykładem oporu materii. W mechanice najczęściej spotykamy się z dwoma rodzajami tarcia:
tarciem przesuwnym (siła tarcia powstaje w wyniku przesuwania się po sobie powierzchni lub próby przesunięcia bez wprowadzenia w ruch)
tarciem tocznym (opór podczas toczenia ciał)
Gdy tarcie nie występowało to na mocy pierwszej zasady dynamika Newtona ciało raz rozpędzone poruszałoby się ruchem jednostajnym w nieskończoność, gdyby na ciało działała niezrównoważona siła to na mocy drugiej zasady dynamiki Newtona ciało rozpędzałoby się w nieskończoność. Oczywiście jak wiemy z doświadczeń oba hipotetyczne przypadki nie występują. Pierwszy przypadek jest niemożliwy z uwagi na występowanie oporu materii, a drugi przypadek z powodu oporu materii oraz ograniczeń związanych Szczególną Teorią Względności Alberta Einsteina (żadne ciało posiadające masę spoczynkową większą od zera, nie może osiągnąć prędkości większej od prędkości światła c w próżni).

Mechanika tarcie – zadania

Podstawy napędu elektrycznego

silnik elektryczny napędzający windę

Napęd elektryczny jest jednym z najpowszechniej stosowanych napędów zarówno w przemyśle jak/i gospodarstwie domowym. Wymieniać można by bez końca rodzaje silników elektrycznych oraz urządzenia codziennego użytku w których są one zastosowane. W ogólności silniki elektryczne dzielimy na dwie główne grupy:
silniki prądu stałego
silniki prądu przemiennego.
Każda z wymienionych grup posiada wiele rozwiązań konstrukcyjnych. Na stronie szczegółowej znaleźć można wiele informacji dotyczących budowy i parametrów podstawowych silników. Informacje na stronie zawierają również metody tworzenia modeli matematycznych wybranych silników oraz sposoby regulacji wielkościami wyjściowymi silników takich jak prędkość kątowa, prąd, moment.

Podstawy napędu elektrycznego